Cite this article as:

Matveev O. A., Matveev V. A. On a Particular Equivalent of Extended Riemann Hypothesis for Dirichlet L-functions on Numerical Fields. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2013, vol. 13, iss. 4, pp. 76-79. DOI: https://doi.org/10.18500/1816-9791-2013-13-4-76-79


Language: 
Russian
Heading: 
UDC: 
511.3

On a Particular Equivalent of Extended Riemann Hypothesis for Dirichlet L-functions on Numerical Fields

Abstract: 
A condition on summatory function over a set of prime ideals for Dirichlet L-functions on numerical fields is obtained. This condition is equivalent to extended Riemann hypothesis. Analytical properties of Euler products associated with this equivalent are studied
References
1. Hardy G. H., Littlewood J. E. Some problems of partitio numerorum III : On the expression of a number as a sum of primes. Acta Mathematica, 19232, vol. 44, pp. 1–70.
2. Kheil’bronn Kh. ³-funktsii i L-funktsii [³-functions and L-functions]. Algebraicheskaia teoriia chisel [Algebraic number theory], Moscow, Mir, 1969, pp. 310–346 (in Russian)
Short text (in English): 
Full text: