Cite this article as:
Laurinˇcikas A. ., Macaitiene R. .., Mokhov D. .., Siauciunas D. .. On Universality of Certain Zeta-functions. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2013, vol. 13, iss. 4, pp. 67-72. DOI: https://doi.org/10.18500/1816-9791-2013-13-4-67-72
Language:
Russian
Heading:
UDC:
511.3
On Universality of Certain Zeta-functions
Abstract:
It is well known that a generalization of the Hurwitz zeta-function—the periodic Hurwitz zeta-function with transcendental parameter is universal in the sense that its shifts approximate any analytic function. In the paper, the transcendence condition is replaced by a simpler one on the linear independence of a certain set.
Key words:
References
1. Javtokas A., Laurincˇ ikas A. The universality of the periodic Hurwitz zeta-function // Integral Transforms Spec. Funct. 2006. Vol. 17, № 10. P. 711–722.
2. Cassels J. W. S. Footnote to a note of Davenport and Heilbronn // J. London Math. Soc. 1961. Vol. 36. P. 171–184.
3. Laurincˇ ikas A., Garunksˇ tis R. The Lerch Zeta-Function. Dordrecht : Kluwer, 2002. 189 p.
4. Heyer H. Probability Measures on Locally Compact Groups. Berlin : Springer, 1977. 531 p.
5. Billingsley P. Convergence of Probability Measures. N.Y. : Wiley, 1968. 272 p.
6. Javtokas A., Laurincˇ ikas A. On the periodic zetafunction // Hardy-Ramanujan J. 2006. Vol. 29. P. 18–36.
7. Mergelyan S. N. Uniform approximation to functions of complex variable // Usp. Matem. Nauk. 1952. Vol. 7. P. 31–122.
Short text (in English):
39
Full text:
60