Cite this article as:
Sherstyukov V. B. The problem of Leont'ev on entire functions of completely regular growth . Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2013, vol. 13, iss. 2, pp. 30-35. DOI: https://doi.org/10.18500/1816-9791-2013-13-2-1-30-35
The problem of Leont'ev on entire functions of completely regular growth
We consider an entire function of exponential type with all its zeros are simple and form a sequence with the index condensation zero. On the set of zeros a function of its derivative is growing quickly. Required to determine whether original function have complete regularity of growth. This problem, which arose in the theory of representation of analytic functions by exponential series was posed by A. F. Leontiev more than forty years ago and has not yet been solved. In this paper we show that the aforesaid problem a positive solution if the function is “not too small” on a straight line.
1. Leont’ev A. F. On conditions of expandibility of
analytic functions in Dirichlet series. Math. of the USSR-
Izvestiya, 1972, vol. 6, no. 6, pp. 1265–1277. DOI:
10.1070/IM 1972v006n06ABEH001918.
2. Levin B. Ja. Distributions of zeros of entire functions.
RI, Providence, Amer. Math. Soc., 1964. [Rus. ed.:
Levin B. Ja. Raspredelenie kornei tselykh funktsii.
Moscow, Gostekhizdat, 1956. 632 p.]
3. Leont’ev A. F. Riady eksponent [Exponential series].
Moscow, Nauka, 536 p. (in Russian).
4. Leont’ev A. F. Tselye funktsii. Riady eksponent [Entire
functions. Exponential series]. Moscow, Nauka, 1983,
175 p. (in Russian).
5. Korobeinik Yu. F. Representing systems. Russian
Math. Surv., 1981, vol. 36, no. 1, pp. 75–137. DOI:
10.1070/RM1981v036n01ABEH002542.
6. Abanin A. V. Slabo dostatochnye mnozhestva i abso-
liutno predstavliaiushchie sistemy. Diss. dokt. fiz.-mat.
nauk [Weakly sufficient sets and absolutely representing
systems. Dr. phys. and math. sci. diss.]. Rostov on Don,
1995, 268 p.
7. Bratishchev A. V. A type of lower estimate for entire
functions of finite order, and some applications. Math. of
the USSR-Izvestiya, 1985, vol. 24, no. 3, pp. 415–438.
DOI: 10.1070/IM1985v024n03ABEH001243.
8. Korobeinik Yu. F. Maksimal’nye i °-dostatochnye
mnozhestva. Prilozheniia k tselym funktsiiam. II [The
maximal and °-sufficient sets. Applications to entire
functions]. Teoriia funktsii, funktsional’nyi analiz i
ikh prilozheniia. Kharkov, 1991, vol. 55, pp. 23–34 (in
Russian).
9. Sherstyukov V. B. On a question about °-sufficient
sets. Siberian Math. J., 2000, vol. 41, no. 4, pp. 778–
784. DOI: 10.1007/BF02679704.
10. Sherstyukov V. B. On a problem of Leont’ev
and representing systems of exponentials. Math.
Notes, 2003, vol. 73, no. 2, pp. 286–298. DOI:
10.1023/A:1025068527611.
11. Sherstyukov V. B. Ob odnom podklasse
tselykh funktsii vpolne reguliarnogo rosta [On a
subclass of entire functions of completely regular
growth]. Kompleksnyi analiz. Teoriia operatorov.
Matematicheskoe modelirovanie. Vladikavkaz, Publ.
VNTs RAN, 2006, pp. 131–138 (in Russian).
12. Sherstyukov V. B. On some criteria for completely
regular growth of entire functions of exponential type.
Math. Notes, 2006, vol. 80, no. 1, pp. 114–126. DOI:
10.1007/s11006-006-0115-6.
13. Bratishchev A. V. On a problem of A. F. Leont’ev. Sov.
Math. Dokl. 1983, vol. 27, pp. 572–574 (in Russian).
14. Mel’nik Yu. I. O predstavlenii reguliarnykh funktsii
riadami tipa riadov Dirikhle [On the representation of
regular functions by Dirichlet type series]. Issledovanie
po teorii priblizhenii funktsii i ikh prilozheniia, Kiev,
Naukova Dumka, 1978, pp. 132–141 (in Russian).
15. Mel’nik Yu. I. Ob usloviiakh skhodimosti riadov
Dirikhle, predstavliaiushchikh reguliarnye funktsii
[Conditions for the convergence of Dirichlet series that
represent regular functions]. Matematicheskii analiz
i teoriia veroiatnostei, Kiev, Naukova Dumka, 1978,
pp. 120–123 (in Russian).
16. Mel’nik Yu. I. Ob usloviiakh razlozhimosti
reguliarnykh funktsii v riady eksponent [On conditions of
expandibility of regular functions in exponential series].
Vsesoiuz. simpozium po teorii approksimatsii funktsii v
kompleksnoi oblasti, Ufa, 1980, pp. 94 (in Russian).
17. Bratishchev A. V. Bazisy Kete, tselye funktsii i ikh
prilozheniia. Diss. dokt. fiz.-mat. nauk [Kothe bases,
entire functions and their applications. Dr. phys. and
math. sci. diss.]. Rostov on Don, 1997, 248 p.
18. Ingham A. E. A note on Fourier transforms. J. London
Math. Soc., 1934, vol. 9, pp. 29–32.
19. Levinson N. Gap and density theorems. New York,
Amer. Math. Soc., 1940, 246 p.
20. Sedletskii A. M. Klassy analiticheskikh preobrazo-
vanii Fur’e i eksponentsial’nye approksimatsii [Classes
of analytic Fourier transforms and exponential
approximations]. Moscow, Fizmatlit, 2005, 503 p. (in
Russian).
21. Levin B. Ja. Pochti periodicheskie funktsii s ogranichennym
spektrom [Almost periodic functions with
bounded spectrum]. Aktual’nye voprosy matematiches-
kogo analiza, Rostov on Don, 1978, pp. 112–124 (in
Russian).