Cite this article as:

Aldashev S. A. Well-posedness of the Dirichlet problem in a cylindrical domain for multidimensional elliptic-parabolic equation . Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2014, vol. 14, iss. 1, pp. 5-10. DOI: https://doi.org/10.18500/1816-9791-2014-14-1-5-10


Language: 
Russian
Heading: 
UDC: 
517.956

Well-posedness of the Dirichlet problem in a cylindrical domain for multidimensional elliptic-parabolic equation

Abstract: 

A unique solvability of classic solutions to Dirichlet's problem in the cylindrical domain for the model multidimensional elliptic-parabolic equation is shown in the article

Key words: 
References
1. Fikera G. K edinoi teorii kraevykh zadach dlia
elliptiko-parabolicheskikh uravnenii vtorogo poriadka
[The unified theory of boundary value problems for
elliptic-parabolic equations of second order]. Sbornik
perevodov. Matematika. 1963, vol. 7, no. 6, pp. 99–121
(in Russian).
2. Oleinik O. A., Radkevich E. V. Uravneniia s
neotritsatel’noi kharakteristicheskoi formoi [Equations
with nonnegative characteristic form]. Moscow, Moscow
Univ. Press, 2010, 360 p. (in Russian).
3. Mihlin S. G. Mnogomernye singulyarnye integraly
i integral’nye uravneniya [Higher-dimensional singular
integrals and integral equations]. Moscow, Gosudarstv.
Izdat. Fiz.-Mat. Lit., 1962, 254 p. (in Russian).
4. Tikhonov A. N., Samarskii A. A. Equations of
mathematical physics. Translated from the Russian by
A. R. M. Robson and P. Basu. Reprint of the 1963
translation. New York, Dover Publications, Inc., 1990.
765 p.
5. Kamke E. Spravochnik po obyknovennym differentsial’nym [Manual of ordinary differential equations].
Third revised edition. Translated from the German by
S. V. Fomin. Moscow, Nauka, 1965, 703 p. (in Russian).
6. Beitmen G., Erdeii A. Vysshie transtsendentnyefunktsii. T. II: Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonal’nye mnogochleny [Higher
transcendental functions. Vol. II: Bessel functions,
parabolic cylinder functions, orthogonal polynomials].
Translated from the English by N. Ja. Vilenkin. Second
edition, unrevised. Spravochnaya Matematicheskaya
Biblioteka [Mathematical Reference Library]. Moscow,
Nauka, 1974. 295 p. (in Russian).
7. Aldashev S. A. The correctness of the Dirichlet problem
in the cylindric domain for one class of multi-dimensional
elliptic equations. Vestnik, Quart. J. of Novosibirsk State
Univ. Ser. Math., mech., inform., 2012, vol. 12, iss. 1,
pp. 7–13 (in Russian).
8. Aldashev S. A. The correctness of the Dirichlet problem
in the cylindric domain for equation Laplase. Izv. Saratov.
Univ. (N.S.), Ser. Math. Mech. Inform., 2012, vol. 12,
iss. 3, pp. 3–7 (in Russian).
Short text (in English): 
Full text: