Образец для цитирования:

Панкратов И. А. Аналитическое решение уравнений ориентации околокруговой орбиты космического аппарата // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2015. Т. 15, вып. 1. С. 97-105. DOI: https://doi.org/10.18500/1816-9791-2015-15-1-97-105


Язык публикации: 
русский
Рубрика: 
УДК: 
629

Аналитическое решение уравнений ориентации околокруговой орбиты космического аппарата

Аннотация: 

Рассмотрена задача оптимальной переориентации орбиты космического аппарата (КА) с помощью ограниченного по модулю управления, ортогонального плоскости орбиты КА. Найдено приближённое аналитическое решение дифференциальных уравнений ориентации круговой орбиты КА для постоянного на смежных участках активного движения КА управления.

Библиографический список
  1. Челноков Ю. Н. Применение кватернионов в теории орбитального движения искусственного спутника. I // Космические исследования. 1992. Т. 30, вып 6. С. 759– 770.
  2. Челноков Ю. Н. Применение кватернионов в задачах оптимального управления движением центра масс космического аппарата в ньютоновском гравитационном поле. I // Космические исследования. 2001. Т. 39, вып 5. С. 502–517.
  3. Челноков Ю. Н. Применение кватернионов в задачах оптимального управления движением центра масс космического аппарата в ньютоновском гравитационном поле. II // Космические исследования. 2003. Т. 41, вып. 1. С. 92–107.
  4. Челноков Ю. Н., Панкратов И. А. Переориентация круговой орбиты космического аппарата с тремя точками переключения управления // Мехатроника, автоматизация, управление. 2011. № 1. С. 70–73.
  5. Справочное руководство по небесной механике и астродинамике / В. К. Абалакин, Е. П. Аксенов, Е. А. Гребенников [и др.]. М. : Наука, 1976. 864 с.
  6. Бранец В. Н., Шмыглевский И. П. Применение кватернионов в задачах ориентации твердого тела. М. : Наука, 1973. 320 с.
  7. Молоденков А. В. К решению задачи Дарбу // Изв. РАН. МТТ. 2007. № 2. С. 3–13.
  8. Челноков Ю. Н. Оптимальная переориентация орбиты космического аппарата посредством реактивной тяги, ортогональной плоскости орбиты // Математика. Механика : сб. науч. тр. Саратов : Изд-во Сарат. ун-та, 2006. Вып. 8. С. 231–234.
  9. Панкратов И. А., Сапунков Я. Г., Челноков Ю. Н. Решение задачи оптимальной переориентации орбиты космического аппарата с использованием кватернионных уравнений ориентации орбитальной системы координат // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2013. Т. 13, вып. 1, ч. 1. С. 84–92.
  10. Панкратов И. А., Челноков Ю. Н. Аналитическое решение дифференциальных уравнений ориентации круговой орбиты космического аппарата // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2011. Т. 11, вып. 1. С. 83–89.
  11. Найфэ А. Введение в методы возмущений. М. : Мир, 1984. 535 с.
  12. Челноков Ю. Н. Кватернионные и бикватернионные модели и методы механики твердого тела и их приложения. Геометрия и кинематика движения. М. : Физматлит, 2006. 512 с.
  13. Зайцев В. Ф., Полянин А. Д. Справочник по обыкновенным дифференциальным уравнениям. М. : Физматлит, 2001. 576 с.

 

Полный текст в формате PDF: