Cite this article as:

Kovalev V. A., Radaev Y. N. Covariant field equations and d-tensors of hyperbolic thermoelastic continuum with fine microstructure . Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2013, vol. 13, iss. 2, pp. 60-68. DOI: https://doi.org/10.18500/1816-9791-2013-13-2-1-60-68


Language: 
Russian
Heading: 

Covariant field equations and d-tensors of hyperbolic thermoelastic continuum with fine microstructure

Abstract: 

A non-linear mathematical model of hyperbolic thermoelastic continuum with fine microstructure is proposed. The model is described in terms of 4-covariant field theoretical formalism. Fine microstructure is represented by d-tensors, playing role of extra field variables. A Lagrangian density for hyperbolic thermoelastic continuum with fine microstructure is given and the corresponding least action principle is formulated. 4-covariant field equations of hyperbolic thermoelasticity are obtained. Constitutive equations of microstructural hyperbolic thermoelasticity are discussed. Virtual microstructural inertia is added to the considered action density. It is also concerned to the thermal inertia. Variational symmetries of the thermoelastic action are used to formulate covariant conservation laws in a plane space-time. 

References

1. Kovalev V. A., Radaev Yu. N. Elementy teorii polia:

variatsionnye simmetrii i geometricheskie invarianty

[Elements of the field theory: variational symmetries and

geometric invariants]. Moscow, Fizmatlit, 2009, 156 p.

(in Russian).

2. Kovalev V. A., Radaev Yu. N. Volnovye zadachi teorii

polia i termomekhanika [Wave problems of the field

theory and thermomechanics]. Saratov, Saratov Univ.

Press, 2010, 328 p. (in Russian).

3. Ovsiannikov L. V. Gruppovoi analiz differentsial’nykh

uravnenii [Group analysis of differential equations].

Moscow, Nauka, 1978, 400 p. (in Russian).

4. Toupin R. A. Theories of Elasticity with Couple-stress.

Arch. Ration. Mech. Anal., 1964, vol. 17, no. 5, pp. 85–

112.

5. Cosserat E., Cosserat F. Th´eorie des corps d´eformables.

Paris, Librairie Scientifique A. Hermann et Fils, 1909,

226 p. (in French).

6. Kovalev V. A., Radaev Yu. N. Derivation of energy-

momentum tensors in the theories of hyperbolic

micropolar thermoelasticity. Mech. Sol. 2011, vol. 46,

no. 5, pp. 705—720.

7. Kovalev V. A., Radaev Yu. N. Teoretiko-polevye formulirovki

i modeli nelineinoi giperbolicheskoi mikropoliarnoi

termouprugosti [Covariant field formulations and models

of non-linear hyperbolic micropolar thermoelasticity].

XXXVI Dal’nevostochnaia matematicheskaia shkola-

seminar im. akad. E. V. Zolotova. Vladivostok, 2012,

pp. 137–142 (in Russian).

8. Kovalev V. A., Radaev Yu. N. On precisely conserved

quantities of coupled micropolar thermoelastic field. Izv.

Sarat. Univ. N. S. Ser. Math. Mech. Inform., 2012,

vol. 12, iss. 4, pp. 71–79 (in Russian).

9. Kovalev V. A., Radaev Yu. N. Kovariantnaia forma

uravnenii sovmestnosti na poverkhnostiakh sil’nogo

razryva v mikropoliarnom termouprugom kontinuume:

giperbolicheskaia teoriia [Covariant forms of jump

equations on shock surfaces in micropolar thermoelastic

continuum: a hyperbolic theory]. Trudy XVI Mezhduna-

rodnoi konferentsii «Sovremennye problemy mekhaniki

sploshnoi sredy». vol. II. Rostov on Don, 2012, pp. 99–

103 (in Russian).

Short text (in English): 
Full text: