Fourier series

Приближение непрерывных 2π-периодических кусочно-гладких функций дискретными суммами Фурье

Пусть N > 2 — некоторое натуральное число. Выберем на вещественной оси N равномерно расположенных точек tk = 2πk/N + u (0 6 k 6 N − 1). Обозначим через Ln,N(f) = Ln,N(f,x) (1 6 n 6 N/2) тригонометрический полином порядка n, обладающий наименьшим квадратичным отклонением от f относительно системы{tk}N−1 k=0 . Выберем m+1 точку −π = a0 < a1 < ... < am−1 < am = π, где m > 2, и обозначим Ω = {ai}m i=0.

Аппроксимативные свойства дискретных сумм Фурье для некоторых кусочно-линейных функций

Для заданного натурального числа N > 2 на отрезке [0,2π] выбрано N равноотстоящих узлов  t_k = 2πk/N (0 < k < N − 1) Для каждого натурального числа  n, удовлетворяющего неравенству 1 < n < ⌊N/2⌋, обозначим через  L_ n,N (f) = L _n,N (f,x) тригонометрический полином порядка n наименьшего квадратического отклонения от функции f в точках tk, который доставляет минимум сумме среди всех тригонометрических полиномов Tn порядка n. Рассмотрена задача о приближении кусочно-линейных периодических функций полиномами N L n,N (f,x).

Гармонический анализ периодических на бесконечности функций в пространствах Степанова

В статье рассматриваются пространства Степанова функций, определенных на R со значениями в комплексном банаховом пространстве. Вводятся понятия медленно меняющихся и периодических на бесконечности функций из пространства Степанова. Основные результаты статьи связаны с гармоническим анализом периодических на бесконечности функций из пространства Степанова. Вводится понятие обобщенного ряда Фурье, коэффициенты которого являются медленно меняющимися на бесконечности функциями (не обязательно постоянными).

Предельные дискретные ряды Мейкснера и их аппроксимативные свойства

В работе исследуется задача о приближении функций дискретными рядами по полиномам Мейкснера, ортогональным на равномерной сетке {0, 1, . . .}. Сконструированы новые ряды по этим полиномам, для которых в точке x = 0 частичные суммы совпадают с приближаемой функцией f(x). Новые ряды образованы с помощью предельного перехода при α → −1 рядов Фурье Σk=0fαkmαk(x) по полиномам Мейкснера.

Промежуточный случай регулярности в задаче дифференцирования кратных интегралов

В работе обобщаются теоремы Лебега и Иессена – Марцинкевича – Зигмунда о дифференцировании неопределенных интегралов в RN на случай промежуточной регулярности системы множеств. Рассматриваются приложения полученных результатов к разложению в ряд Фурье – Хаара и орторекурсивному разложению по системе брусов.

О гармоническом анализе периодических на бесконечности функций

В работе изучаются медленно меняющиеся и периодические на бесконечности функции нескольких переменных со значениями в банаховом пространстве. Вводится понятие ряда Фурье периодической на бесконечности функции, изучаются свойства рядов Фурье и вопросы сходимости. Основные результаты статьи получены с существенным использованием теории изометрических представлений. 

Одномерная задача о нестационарной связанной упругой диффузии для слоя

Рассматривается задача об определении напряжённо-деформированного состояния упругой среды с учётом структурных изменений, обусловленных наличием диффузионных потоков. Влияние диффузионных процессов на напряжённо-деформированное состояние среды учитывается с помощью локально равновесной модели упругой диффузии, включающей в себя связанную систему уравнений движения упругого тела и уравнения массопереноса. Для решения используется разложение искомых функций в ряды Фурье с последующим применением интегрального преобразования Лапласа по времени. Строится фундаментальное решение задачи.