Математика

О проблеме А. В. Михалева для алгебр Ли

Решена ослабленная проблема А. В. Михалева о первичном радикале артиновых алгебр Ли.

Об одном эквиваленте расширенной гипотезы Римана для L-функций Дирихле числовых полей

Для L-функций Дирихле числовых полей получено условие на сумматорнуюфункцию, рассматриваемую на множестве простых идеалов, эквивалентное расширенной гипотезе Римана. Изучаются аналитические свойства эйлеровых произведений, связанных с этим эквивалентом.

К оценке одного класса сумматорных функций

Для конечнозначных функций натурального аргумента h(n), имеющих ограниченную сумматорную функцию, оцениваются сумматорные функции вида P n·x h(n)nit, 1 · |t| · T.

Аппроксимационные полиномы и поведение L-функций Дирихле в критической полосе

Строится последовательность полиномов Дирихле, аппроксимирующих L-функции Дирихле, что позволяет эффективно вычислять нули и высказать предположения относительно поведения L-функций Дирихле в критической полосе.

Об универсальности некоторых дзета-функций

Хорошо известно, что обобщение дзета функции Гурвица—периодическая дзета функция Гурвица—с трансцендентным параметром универсальна в том смысле, что её сдвигами приближается всякая аналитическая функция. В статье условие трансцендентности параметра заменяется более слабым условием о линейной независимости некоторого множества.

Об одной комбинаторной проблеме, связанной с быстрым умножением матриц

В рамках теоретико-группового подхода Х. Кона, К. Уманса, Р. Клейнберга, Б. Сегеди к проблеме быстрого умножения матриц возникают специфические комбинаторные объекты, получившие название «однозначно разрешимые матрицы» («uniquely solvable puzzle») или USP-матрицы. В работе обсуждается некоторая числовая характеристика USP-матриц и исследуется связь между USP-матрицами и известной комбинаторной проблемой, в англоязычной литературе носящей название «Cap set problem».

Конгруэнции полигонов над группами

Получено полное описание конгруэнций полигонов над группами.

О решетках конгруэнций прямых сумм сильно связных коммутативных унарных алгебр

Объединение любого семейства попарно непересекающихся унарных алгебр называют их прямой суммой. Говорят, что унарная алгебра сильно связна, если она порождается любым своим элементом. В данной работе исследуется решетки конгруэнций коммутативных унарных алгебр с конечным числом операций, у которых каждая связная компонента является сильно связной. Найдено необходимое и достаточное условие, при котором решетка конгруэнций произвольной алгебры из этого класса является дистрибутивной. Описан также класс всех дистрибутивных решеток конгруэнций алгебр из обозначенного класса.

Об условиях дистрибутивности и модулярности решеток конгруэнций коммутативных унарных алгебр

Статья посвящена известной проблеме описания унарных алгебр, решетки конгруэнций которых обладают заданным свойством. К настоящему времени эта проблема решена для унарных алгебр с одной операцией. Показано, что для произвольных коммутативных унарных алгебр данная проблема является гораздо более сложной. Здесь приводится несколько необходимых условий дистрибутивности и модулярности таких решеток. Доказано также, что решетка всех подмножеств любого множества изоморфна решетке конгруэнций подходящей связной коммутативной унарной алгебры.

Некоторые вопросы теоретико-числового метода в приближенном анализе

В данной работе дается обзор некоторых актуальных проблем метода оптимальных коэффициентов Н. М. Коробова. Данный обзор был сделан 12 сентября 2013 года в г. Саратове на XI Международной конференции «Алгебра и теория чисел: современные проблемы и приложения».

Страницы