Математика

О рядах Дирихле с конечнозначными мультипликативными коэффициентами, удовлетворяющих функциональному уравнению римановского типа

В данной работе доказывается утверждение о том, что в классе рядов Дирихле, абсолютно сходящихся в полуплоскости σ > 1, имеющих конечнозначные мультипликативные коэффициенты, только L-функции Дирихле удовлетворяют функциональному уравнению римановского типа.

Об одной бинарной аддитивной задаче

В работе решается бинарная аддитивная задача с полупростыми числами, на которые наложены дополнительные ограничения.

О сходимости средних Рисса разложений по собственным функциям функционально-дифференциального оператора на графе-цикле

В работе найдены необходимые и достаточные условия равномерной сходимости обобщенных средних Рисса разложений по собственным и присоединенным функциям функционально-дифференциального оператора первого порядка на графе из трех ребер, образующих цикл.

Точные порядки погрешностей аппроксимации гладких функций

В данной работе получены точные по порядку оценки погрешностей приближений к функции вместе с ее производными в равномерной метрике на некоторых классах в случаях, когда функция задана точно, и когда она задана ее δ-приближением fδ(x) в метрике пространства L2[a,b]. В качестве приближающих операторов берутся интегральные операторы с полиноминальными финитными ядрами.

Многомерные q-интегральные p-модули и критерии обобщенной дифференцируемости

В статье в терминах Lq-нормы дается характеристика анизотропных пространств С.Л. Соболева в пространстве Lp. Так как по одной части номеров возможно неравенство pi>1, а по другой – pi=1, то аналог теоремы Ф. Рисса и Hardy–Littlwood представляется в комбинированном виде. Рассматривается более общее дифференцирование, регулярное по М. Шварцу, которое лишь по части переменных является соболевским.

Обертоны осцилляторных булевых матриц

Рассматриваются закономерности функционирования систем с конечным числом элементов, на которых заданы булевы бинарные отношения различных типов. Проводится построение квадратных матриц над произвольной булевой алгеброй, определяющих некоторое булево бинарное отношение, порождающее циклическую полугруппу с максимальным индексом и периодом.

О единственности решения задачи наилучшего приближения многозначного отображения алгебраическим полиномом

В настоящей статье рассмотрена задача о наилучшем приближении дискретного многозначного отображения, образами которого в узлах дискретной сетки являются фиксированные отрезки, алгебраическим полиномом заданной степени. Получены необходимые и достаточные условия единственности решения этой задачи. Доказательство основано на опубликованных ранее статьях о свойствах решения рассматриваемой задачи, а также на двух вспомогательных леммах. Используется теория минимаксных задач, теория приближений П.Л.

Обратная спектральная задача восстановления одномерного возмущения интегрального вольтеррова оператора

Рассматривается интегральный оператор, представимый в виде суммы вольтеррова оператора и одномерного, причем обратным оператором к вольтеррову является интегро-дифференциальный оператор второго порядка. Исследуется обратная задача восстановления одномерного слагаемого по спектральным данным в предположении, что вольтеррова компонента известна априори. Доказана единственность решения обратной задачи и получены условия, необходимые и достаточные для ее разрешимости.

 

Решение одной обратной задачи

Дано решение задачи о нахождении равномерных приближений к правой части линейного обыкновенного дифференциального уравнения общего вида в случае, когда заданы приближения к точному решению. Построенный метод имеет простую конструкцию, не требует дополнительной информации о точной правой части, дает равномерные приближения к ней на всем отрезке, не связан с краевыми условиями.

Страницы