Математика

Равномерная сходимость рядов по мультипликативным системам

Доказаны две теоремы о равномерной сходимости и ограниченности частных сумм рядов по мультипликативным системам с обобщенно-монотонными коэффициентами.

Аффинные квантовые фреймы и их спектр

Задача квантования коэффициентов приближающих полиномов решается для аффинныхфреймов. Рассматривается также задача о квантовании коэффициентов разложения по фрейму. Вводится понятие спектра квантового фрейма. Оценивается спектр семейства аффинных фреймов.

Предельные дискретные ряды Мейкснера и их аппроксимативные свойства

В работе исследуется задача о приближении функций дискретными рядами по полиномам Мейкснера, ортогональным на равномерной сетке {0, 1, . . .}. Сконструированы новые ряды по этим полиномам, для которых в точке x = 0 частичные суммы совпадают с приближаемой функцией f(x). Новые ряды образованы с помощью предельного перехода при α → −1 рядов Фурье Σk=0fαkmαk(x) по полиномам Мейкснера.

Счетносвязная область не гомеоморфна несчетносвязной

В 1923 году Керекьярто доказал, что счетносвязная область не гомеоморфна несчетносвязной. В этой заметке дано другое доказательство этого факта с использованием методов комплексного анализа.

Разложение по собственным функциям квадратичных сильно нерегулярных пучков дифференциальных операторов второго порядка

Рассматривается квадратичный сильно нерегулярный пучок обыкновенных дифференциальных операторов 2-го порядка с постоянными коэффициентами и с положительными корнями характеристического уравнения. Найдены суммы двукратных разложений в ряд по собственным функциям таких пучков и необходимые и достаточные условия сходимости указанных разложений к разлагаемой вектор-функции.

О связи производной многозначного отображения и его опорной функции

В работе получены достаточные условия, при которых опорная функция производной многозначного отображения в некотором смысле совпадает с производной опорной функции многозначного отображения. Приведен пример несовпадения этих понятий и пример липшицева многозначного отображения, опорная функция которого ни в одной точке не имеет смешанных производных.

Качественные свойства слабых решений задачи Коши

В работе изучаются качественные свойства слабого решения задачи Коши для уравнения теплопроводности. Доказано, что каждое слабое решение задачи Коши является медленно ме-
няющейся на бесконечности функцией. Полученный результат применяется для исследования решения задачи Неймана для уравнения теплопроводности.

О классическом решении одной смешанной задачи для волнового уравнения

В статье методом Фурье дается классическое решение смешанной задачи для волнового уравнения с комплексным потенциалом при минимальных условиях гладкости начальных данных. Используется резольвентный подход, состоящий в привлечении вформальном решении метода Коши – Пуанкаре интегрирования резольвенты соответствующей спектральной задачи по спектральному параметру, не требующий никакой информации о собственных и присоединенных функциях и использующий лишь главную часть асимптотики собственных значений. Существенно используется прием А. Н. Крылова об ускорении сходимости рядов Фурье.

Решение однородной краевой задачи Римана со счётным множеством точек разрыва первого рода её коэффициента

Даётся решение однородной краевой задачи Римана со счётным множеством точек разрыва первого рода её коэффициента, когда требуется найти две функции, аналитические соответственно в верхней и нижней полуплоскости, по заданному на действительной оси линейному краевому условию, связывающему граничные значения искомых функций.

Страницы