Математика

Об операторе дифференцирования на компактных нуль-мерных группах

Для одномерного случая указаны условия, при которых оператор дифференцирования не зависит от ортонормированной системы, с помощью которой определен. Для многомерного случая указаны условия, при которых оператор дифференцирования не зависит от способа преобразования многомерной компактной нуль-мерной группы в одномерную. Получен явный вид аннуляторов в многомерной компактной нуль-мерной группе.

Численное решение обратной задачи для оператора Штурма–Лиувилля с разрывным потенциалом

В статье рассматривается дифференциальный оператор Штурма–Лиувилля с потенциалом, имеющим конечное число точек разрыва первого рода. Конечной целью является численное восстановление потенциала такого вида. Основной результат представленной статьи — доказанная теорема и процедура, указывающие способ получения характеристик разрыва из начальных данных.

О подходе к приближенному решению задачи наилучшего приближения выпуклого тела шаром фиксированного радиуса

Рассматривается конечномерная задача о наилучшем приближении в метрике Хаусдорфа выпуклого тела шаром произвольной нормы с фиксированным радиусом. Показано, что в случае, когда приближаемое тело и шар нормы являются многогранниками, задача сводится к задаче линейного программирования. Это позволяет предложить получение приближённого решения задачи через предварительную аппроксимацию приближаемого компакта и единичного шара нормы многогранниками.

Асимптотические значения аналитических функций, связанные с простым концом области определения

В 1954 г. М. Хайнс (M. Heins) доказал, что если A — аналитическое множество, содержащее бесконечность, то существует целая функция, для которой A является асимптотическим множеством. В статье получен аналог теоремы Хайнса: для произвольной многосвязной плоской области D с изолированным граничным фрагментом, аналитического множества A, содержащего бесконечность, и простого конца области D с носителем p построен пример аналитической в D функции, для которой множество асимптотических значений, связанных с p, совпадает с A.

Синтез в полиномиальном ядре двух аналитических функционалов

Пусть ¼ — целая функция минимального типа при порядке ½ = 1, ¼(D) — соответствующий дифференциальный оператор. Максимальное ¼(D)-инвариантное подпространство ядра аналитического функционала называется  его C[¼]-ядром. C[¼]-ядром системы аналитических функционалов называется пересечение их C[¼]-ядер. В статье описаны условия, при которых C[¼]-ядро двух аналитических функционалов допускает синтез по корневым элементам оператора ¼(D).

Слоения на распределениях с финслеровой метрикой

На гладком многообразии M задается распределение D с допустимой финслеровой метрикой. Пусть F — слоение, заданное на M. На распределении D как на гладком многообразии слоению F соответствует слоение TF, с помощью этого слоения и связности над распределением определяется аналог внешнего дифференциала, применимый к формам специального вида. 

Классическое решение методом Фурье смешанных задач при минимальных требованиях на исходные данные

В статье дается новое краткое доказательство теоремы В. А. Чернятина о классическом решении методом Фурье смешанной задачи для волнового уравнения с закрепленными концами при минимальных требованиях на начальные данные. Далее, рассматривается подобная задача для простейшего функционально-дифференциального уравнения первого порядка с инволюцией в случае закрепленного конца, и также получаются результаты окончательного характера. Эти результаты получаются благодаря существенному использованию идей А. Н. Крылова по ускорению сходимости рядов, подобных рядам Фурье.

Расходимость всюду процессов Лагранжа на единичной окружности

Изучаются вопросы сходимости интерполяционных процессов Лагранжа в замкнутом единичном круге. Выбор матрицы с определённым распределением узлов интерполирования позволил построить множество, полностью покрывающее единичную окружность, и функцию, для которой процесс расходится всюду на этом множестве.

Новый подход к решению краевой задачи Римана с бесконечным индексом

В работе рассматривается краевая задача Римана с бесконечным индексом, когда краевое условие задачи задается на действительной оси комплексной плоскости. Для решения этой задачи используется подход, основанный на устранении бесконечного разрыва аргумента коэффициента краевого условия и аналогичный тому, с помощью которого в случае конечного индекса задачи ранее в работах Ф. Д. Гахова устранялись разрывы коэффициента краевого условия с помощью специально подобранных функций, отличных от используемых в настоящей работе.

О тождествах специального вида в алгебрах Пуассона

В работе рассматриваются так называемые customary и extended customary тождества в алгебрах Пуассона. Показано, что последовательность коразмерностей {rn(V )}n¸1 любого extended customary пространства многообразия алгебр Пуассона V над произвольным полем либо ограничена полиномом, либо не ниже показательной функции с основанием степени, равной 2. При этом если данная последовательность ограничена полиномом, то найдется такой многочлен R(x) с рациональными коэффициентами, что rn(V ) = R(n) для всех достаточно больших n.

Страницы