Математика

Один отрицательный пример формосохраняющего приближения

Пусть даны 2s точек yi: −¼ ≤ y2s < . . . < y1 < ¼. Отправляясь от этих точек, определим точки yi для всех целых
i при помощи равенства yi = yi+2s + 2¼. Будем писать f ∈ △(1)(Y ), если f(x) — 2¼-периодическая непрерывная
функция и f(x) не убывает на [yi, yi−1], если i нечетное; f(x) не возрастает на [yi, yi−1], если i четное. Обозначим через
E(1) n (f; Y ) величину наилучшего равномерного приближения функции f ∈ △(1)(Y ) тригонометрическими полиномами

О состояниях обратимости линейных дифференциальных операторов с неограниченными периодическими коэффициентами

Исследуемому линейному дифференциальному оператору (уравнению) с неограниченными периодическими операторными коэффициентами, действующему в одном из банаховых пространств
векторных функций, определенных на всей оси, сопоставляется разностный оператор (разностное уравнение) с постоянным операторным коэффициентом, определенный в соответствующем
банаховом пространстве двусторонних векторных последовательностей. Для дифференциального и разностного оператора доказаны утверждения о совпадении размерностей их ядер и кообразов, одновременной

Весовая интегрируемость сумм рядов по мультипликативным системам

Получены необходимые и достаточные условия Lp-интегрируемости со степенным весом функции f, представимой рядом по мультипликативной системе с обобщенно-монотонными коэффициентами. Интегрируемость мажоранты частичных сумм представляющего функцию ряда описывается теми же условиями. Кроме того, мы изучаем интегрируемость разностного отношения (f(x) − f(0))/x.

О серии подмногообразий многообразия, порожденного простой бесконечномерной алгеброй картановского типа общей серии W2

В работе изучаются числовые характеристики многообразий алгебр Ли над полем нулевой характеристики, в основном экспонента многообразия. Автором была построена дискретная серия алгебр Ли с различными дробными экспонентами роста коразмерностей, принадлежащая многообразию, порожденному простой бесконечномерной алгеброй Ли картановского типа общей серииW2.

Проективное и инъективное описания в комплексной области. Двойственность

 Исследования инвариантных подпространств дифференциальных операторов бесконечного порядка в комплексной области породили целый ряд вопросов, связанных с переходом к двойственным задачам. Настоящая работа посвящена преодолению этих трудностей.

Асимптотические свойства и весовые оценки полиномов, ортогональных на неравномерной сетке с весом Якоби

Работа посвящена исследованию свойств полиномов, образующих ортонормированную систему с весом Якоби на произвольной (не обязательно равномерной) сетке такой, что .

Об обратной задаче для дифференциальных операторов на графе-еже

 Исследуется обратная спектральная задача для дифференциальных операторов Штурма–Лиувилля на графе-еже с обобщенными условиями склейки во внутренних вершинах и с краевыми условиями Дирихле в граничных вершинах. Приведена теорема единственности восстановления потенциалов по заданным спектральным характеристикам, получено конструктивное решение обратной задачи. 

О гармоническом анализе периодических на бесконечности функций

В работе изучаются медленно меняющиеся и периодические на бесконечности функции нескольких переменных со значениями в банаховом пространстве. Вводится понятие ряда Фурье периодической на бесконечности функции, изучаются свойства рядов Фурье и вопросы сходимости. Основные результаты статьи получены с существенным использованием теории изометрических представлений. 

Параболические параллелограммы плоскости Ĥ

На гиперболической плоскости Ĥ положительной кривизны в модели Кэли–Клейна исследованы параболические параллелограммы. Проведена их классификация, получены метрические соотношения между величинами углов и выражения длин ребер через меры углов при вершинах.

Смешанная задача для простейшего гиперболического уравнения первого порядка с инволюцией

Исследуется смешанная задача для дифференциального уравнения первого порядка с инволюцией в потенциале и с периодическими краевыми условиями. Получены уточненные асимптотические формулы для собственных значений и собственных функций соответствующей спектральной задачи, на основе которых проводится обоснование применения метода Фурье.

Страницы